Rooks \& minereas

Rocks
(1) Granite
(2) Basalf
(3) Dolerrite
(a) Shale
(5) Slate
(6) Selist
(f) Graiss
(3) Marbile
(9) Limestone
(10) Phylite
(ii) Sana sto ne
(12) Congtomenate
(13) 2wantzite

Mineral
(1) Laterite
(2) Felds par
(3) mica (Biotite \& muscovite
(4) Tale
(3) Graplite
(b) Banxite
(1) Magnetite
(8) Hamatite
(9) Chaleopynite
(10) Calcite
(II) Galema
(2) Quartz

Ay:- A minemal may bo defiurd as a ratunot inomganic swbikneu. With a deffinite ohemical compsition ant atminc stautur re.

The tenm Aefinite ehern cal composition Thenpines a little shete Conopesikion texprines etratobration besuupa there ane eeriain minknal sperias in which tur composition of the end rombent is fixed and fue intenmidiate rimbnals vary fnow ore another in the gorcontion if twe one or the otwan ebement. But guet vaniestionse follow a detimite ond2R.
minenats can bo vitertified by twir (a) onemical propen Hes, (2) by thain phaysical paopenties. thene wa shoult dis Cus. about tue iupontant pruyse corlpnopenties of the mivanats

Physican propenties
(\#) Fonm: r Severtimes inn minurass Ateitini te opeometrical foans culled enystale can be aeoogniseA cond twepe help oweh in tuat zAentaicution. Fon example, goctera oerusinn pentelt Gupes.

Twone ane otwen fonmb which ane sot opite associnFef with erybtal oharachen but momethe kers twey ano hatp in the identificeation of tue mibarenou.
(4) Acivulan - dive needte likx erystaleftownaxime.
(6) Am-ygdatoidal-alsmonA. shapen erif. zeetities -
(8) Bladed - occuring in thin blades e, or. kyanife.
(a) Botryoidal-Spherebdial argheqgate, enf. elal eedony
(3) Columnar, -columnes eng, benyl.
(6) rodutar - roundet on inregutan rovdines es fotimot
(5) Dendritic - tree lise on moss like feam-ranfancse oce depositelum crences
(b) Fibonus - fine stnamds astoestes.
(13) Mammilt-ated - Iankeniferm - kindly serapen-haemalite.
(1) winy on fie ferm-rope-likeferm - native espeen.
(8) Hardness:- The haraness of minenal mony be deterimitit with the velp of a strondard sot of minenails knoun ay onoh's seate of teendness whien is given in Tatele A. af the gem minuals are exeluded the seme Neered included only i rumbers. Substitues meny los u)ed when the seove miwenals ane soot arailedole (i) Casily senatened. by nail (i1) rot sos east by seno tehed, (ii) Can be senatehed by a pieae a coper (Din) and very easily senatened by a brife, (iv) Senatencd raadily by knife, (v) car be sena. tehea by knife with difficulty, w scratched by witow-glass, (rii) wiudow oflass is senaterced by tra wineral.
Table. A
ktandiness
(i)
(i1)
(111)
(iv)
(v)
(v)
(vii)
vili
(ix)
(x)

Stendana mivenal

Tale

Gypsum
Calcite
Flown-spar
Apatite

- Atwo lase

Quarta
Topaz
Coruradum
Diamona.
(e) Frinctune: Freshy brotan zunfences it-arimats phintat etwas chanaeterustics fracture suata tes: The followines

(7) Conchoidal - The 8-vietura sundacios ane cunvas witz a curccare ine convex formerm. or eranta
(i) coven The Erocturesurufoes are nanely flate. G. in erent.
(ii) Uneven The fractwar suntaces is fonmed of rinute elevatione. and tepresessons, exg, most oninerals
(D) ekearare emystillime nonimenols ane soid to cheave on-hare eleavage bthen twey break in dotinite dinections alomf Smoode sunfters. These ane diagore Osti a of some minarals as follows -
(1) Octahadpeax \rightarrow Diouomand.
(2) Platy \rightarrow Covellite, molybdenite
(3) Cubic Bratena, Halite
(4) Sealy \rightarrow Graphite.
(8) Phombic \rightarrow Catcite, s-ziomitie, sidn \rightarrow, Pite.
(b) E laky \rightleftharpoons mica, elnonite.
(f) Diamond-shaped Borcite.
(8) $B(00 \mathrm{OHy} \rightarrow \mathrm{Arhy} \mathrm{\Delta rite}$, Felispacz.
(E) Coloun or wotcen a body arosores all fhe suror Colouns that compose the lizest white lisinf it appeans blaek, and 2 is rettects all the colours it appears write. Thay the coloure of a body depends on the selective rette ebitoon and absorptiom of the aipfenert vibnations of waike ligut.

1. Yealow \longrightarrow sutphus I. White \rightarrow kaolinite.
2. Pioke \rightarrow Felaspar
3. Siuk \rightarrow Aruvite

4 . 6 treeen \rightarrow malaolite
5. Brasss \rightarrow elalcopyrite
t. Pruburn \rightarrow Apratite.
F. Strceak:- The coloun if the powien of a minenum Scometimes difticns from the mineriest in onass, engo Pyrite, This car bere obsenived \& on m the streat of tas minenal e be by riubbinf twe minenal on a hant phain surtace to produce a colour line. Diftereyt speedwens of tue same minenal misuls shew varivion irecoloci, yet the streak is foxidy coustont.

1. Haematita \rightarrow amdian reed.
2. Magretite, Graphite \rightarrow Black
3. Golena \rightarrow Gieerish

4, elakenpynite \rightarrow Greemish-black
5. Chaleocite \rightarrow Gray.
6. Carnotite \rightarrow yellow.
(7) Lustre: The a Toung and type if reitrection frain the suretace of a minenal setenmines its bitishtress. we can disfingwirh the following typers of twotne.
(1) Metallic \rightarrow The lustre of prdinarn metals, e.p. Galena.
(ii) Vitreeous \rightarrow twe brisutsmes of broken oflass, ei ig Quantit
(iii) Resiman \rightarrow Topaz The lustre nesemblimg that if neyn
(ii) Silky \rightarrow Gif. Sulp
(4) Pearly \rightarrow The listre of peant eig tale.
(1) Taste i-some of the onimenels wrich ane solublue In waten gitue distineftue taste bent the ehanketen is rosf wery ubeful in iatentitication of minenals besawt thenc ane only a tew minenals werieh are soluble io? water, eng, Saliustaste is common kon soalt, alkath in oase f soda, petarh
(7) Odoun:- onty a few minerals have distinetime odoun, siveh as the odoun of ganlic tromanscne comporinds, sut prumicous odouns tnom py yrte.
(3) Fexel:- minenals difter ith twa sensiation they give by fower e.6. कnimerais woe gronoth, gineary on nougt..
(2) Magnetismig Genenully grane orinenuls bavimg gron Comportion are magnetse, buf brt is nots reeassanimy applicaple fon all oroon beariug miwnels, saoh an monazite is seightyy mafrubic, elemanoracifretic ewanacten \& miverau sapewas on-vanyiw rawrerist of diftenenb-minenals.
(D) Sperifie Gravity: - The ratio of the weight of bodg totuat of con emuar volume of waten is calted the pesir fic gravity t tre bodey.
(o) Veny heavy \rightarrow Gold, siven, py teonorzpinte,
(6) Heary $\theta \rightarrow$ Gatena, coppen, Ateurite, siaenàte,
(ii) Medium eorundurm, magnesite, Gty psum, coulite, tale,
(8) Lifutr Dolomite, keolinite, Qwantz
\longrightarrow Grraphite, sukpukre, Bonax, opal.

Severted onimerells
(1) Feldspan - Feldspan is twe onere given to a group of minenals distinguished by fue pnerenge fs alvenina oni silica (>ioz) in thein ohemistry This group Lneludes aluminum silicaten of ob soda, pedassiun on lime $9 t$ is sivote mosts abundant onimasul grvoup or eartr. They deeomats ton are estimbtef 60\% of rexporeA oock, as well as sein, elay's ami oterer un eonowlidates detionentss tue minerals ineludad in tuis ogromp aos - ontro chase, rnicnoLiwe rete.
ery stal \rightarrow Anrelinic, mornolinie.

$$
\begin{aligned}
& \begin{array}{l}
\text { sine adi } \\
\text { elassificateon } \rightarrow \text { Silieate } \\
\text { ehemicat formula } \rightarrow
\end{array} \quad \text { KAtSi } 308 \\
& \\
& \text { NAAISi } 308
\end{aligned}
$$

$$
\text { casizsi20of mustre } \rightarrow \text { vitroow }
$$

(2) Mica(Biotite) $\left[K\left(\mathrm{Fe}, \mathrm{Mog}_{2}(\mathrm{Bi} \mathrm{A} 1) \mathrm{O}_{10}(\mathrm{OH})_{2}\right]\right.$
 silicate) ìs a type of rrica and occuns as tobu. an prismatic enystaks witen seatheretd ortaing seales end sealy masses.

Crrystal \rightarrow Morovelirue
Form \rightarrow Seal y
coloun \rightarrow Sulack, drenk gnsen on bnown
Lustre \rightarrow Grenenally glossy with white sinenaeg and platy structionsy.
Opacity \rightarrow (1) paome to tramspanent
Clenvare \rightarrow Fentectiy 1 -dimensionnt Lsplise jubo thin alarit c streets)
Han 2 me $\mathrm{ks} \rightarrow 2,5-3.0$
spoaific gorevity $\rightarrow 2.71-3.1$
(3) Muscovite $\left[K A 1_{2}\left(\mathrm{Si}_{3} A 1\right) \mathrm{O}_{10}(\mathrm{OH})_{2}\right]$
of is the co mrnomzer maica.
ensystal \rightarrow monorlinia
Ferzm \rightarrow Platy fonms eompronz
Coloun \rightarrow from browon-igheer to tstack in finick
platey and blood-ned Ape lowownist anemp
streeax $\rightarrow 2$ thin laminate.
LuAt White
worfre \rightarrow Glassy on peanly
Opocity \rightarrow Oparue to traposilueent, tnanspexievent
when thin Sheats.
 theefs drait tecen witt hackby oderes Handruse but ane alasfic and straino. Speritic $\rightarrow 2-2.5$.
Govarity $\rightarrow 2.76=3$
(9) Talc $\left[\mathrm{M}_{g_{3}} \sin \mathrm{O}_{10}(0 \mathrm{H})_{2}\right]$

Tate (hydrews smafrasiom Silicate) occimes as deliated, radicatimes cond comperet masses, ot hers athruer layen Sheefo sthmeteme. Ture silica teotedrahedrat layeny enelose an oeponedral layer in whieh oul oetathednat peition ane filled with mafresiurn, gneet bondage is vany weak ruat is why $z t$ is pubniecont.

Fon $x \rightarrow$ Tabular or granularz ora shive forms.
eoloun \rightarrow silkily ustitte, rarkely shades of कotereen, streack \rightarrow white.
Lustrie \Rightarrow Pearly
eleavare \rightarrow Penfeen \rightarrow
Fer $\rightarrow \rightarrow$ oreary toproueh
Heend ress $\rightarrow 1$
sperisic cgnavity $\rightarrow 2.58-2.83$
Oporaity \rightarrow Transluendr te triansparemb.
(f) Graphite [e.]

Hike diampnet, of aporite consists semely of cnystellized Canborn but diffens extrapodimariblyin coloun, hamdren, conduetivity ona cnystalisution. gt is of ten itiorous with sectiles. 98t Cun-rmank paper. it is a food condurten and is the ronot stabletonm of eanten.

Fonm \rightarrow Columnare on scale fonm,
Colourz \rightarrow steel greys coloure, black
strear \rightarrow blaex
Lustre \rightarrow metarlie
Feal \rightarrow Sumftana coid
Htandinser $\rightarrow 1 \cdot 5-2$
Spexific (gayby $\rightarrow 2.15$.

IS Auxaite is tha priveremy one of aluminibm. Beusxai te deen not have a sqeeific componition. gt is o mixture of hysabus alumiruutn oreides, alumisum hyano xides, ctay mimsules, ama ionseluble smatericals suei as ormaste, hematite, maugretite, silverite cant goethite.

$$
\text { coustal } \rightarrow \text { r/a }
$$

orange, reat, prink, an brown by inonz.
Spreax \rightarrow usally weite, but ipen stainatan discaloun.
Lustana \rightarrow Drel, erantiny
Clearonge \rightarrow roone.
Handmes $\rightarrow 11-3$
$\underset{\text { geravity }}{S p e i f i c} \rightarrow 2-2.5$
(8) matrox itte [Fe3 O_{4}]

If Contains both Feet+ (fenuows) and qeat (fensic) ions. at is the roost valwable inon one.

Cnustals \rightarrow Detahearal cruystal cimmon
Forme \rightarrow onabsive ond pramulare
Coloun \rightarrow Inon blaek
Striak \rightarrow black
Hustre 7 Sub mefallic
Hean 2 auss $\rightarrow 5.5-6.5$.
SpeeiAc gronity \rightarrow Silg
(B) Hoe matite $\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]$
yt is the magुon onc of inom
Enystak \rightarrow Tabular, Remifonm fibons, RoliateA on in fisseminated small fiakes
©elewr \rightarrow Gnay to blaok, rad in eanthy fonms.
Streax \rightarrow violeet red.
Lustre \rightarrow Motaltic, earthy forms dull
Hondness $\rightarrow 5 \cdot 5-6 \cdot 5$.
Sperific.

$$
\text { ginawing } \rightarrow 4.9-5.3
$$

Acià roachon \rightarrow Solubte in hy ano chionic arind. marmetic \rightarrow oft is mapmetic and sometimes it conitsolf lift iroor Rilimy.
(9) Chaleopynite [uFeSz]
at is twe mort impontonts coppen mineacal and ore of copper.
constals \rightarrow massine also elenefated coystals on spheraintal $F O n$ my \rightarrow Granular cana compaef masses.
colbun \rightarrow Srass yellow.
streak \rightarrow Greesish black
Lustre \rightarrow metrallic
Handress $\rightarrow 3.5-4$
specife gmavity 7 4.1-4.3
Distinfuisthed fnom pyrite by lower harzaness \& deeper Colour.
 Thistics of ridtertand reatk.

Roek 3
Roeks cone the units of tws eanth's crust and ane Compesed of minenals + A roek may we formed a only one minumal pR it may be composca of sevenal mine nat s ogr popirkn conexption twe term rook is arsociated with something hara and heary but in seientific usase a soft clay is ab much a Qock astere hard ofranite.

Genetieally twe roens mas be classified in io three maizor gnoups viz, (1) gorueom (i1) Sedimentary, ama (ii1) meta morphie.
(1) Tgruous Rocks

These have soliditied trom a moltem stete and thus also known as primmary roeks. $91 \mathrm{mos} \frac{\mathrm{f}}{} 95 \%$ of the eanth's coust is compoted of irgmeou rocks which ark the most iupontant growp tcoend which are the mosts impontant ognoup amongst the noks. The gognedus roexs have been clamifies in varions weys aecorzding to the perpose in view-
(1) minenalogical classification - babed on the minenal Composition of tew aoek wrieh can be doten minuत with the help \& a mienosrepe.
(b) Chemical classitication-con bo preparze t ben sed on ehemical conalysis of the racion zugozo. us roexs
(e) Mosfascopic classitication - depents on ehanactens which can be determined from tue oboservation of a ha ha speriment. Ton twis purs pose one dors oot acopine $\$$ onb elabonatse oxwipoment exseptinof porkaps a poekef pon knife and say, a few drops it hydno hionic neid.

Granite

$$
\text { Sperific gnatity }-2.63-2.75
$$

Chanaetenisticy - These are most commonty reasivie massive
roess with ouf showing any tenaeney of foliation on baraing When mefamorphosed they ane banded on foliated and seos, Properly callea granite-gneiss. The granites ane a com. pletely Crystalline roek withouls any ghassy matter and the texture varies from five to coarse. minenalo. gically trey ane composed encifly of grant 2 , felagpons, and aceessories like biatite, musedrite, and othen fereorargnesian minenals and inon oxibes. These roens are named aceorimg totwe most prominent aeeessories as biotite-gnanite, hon-rblende-granitic etr.

On-hand sperimen the quardz, teldspar and the cheif aceessories can be distinguished with the hepp of a pooket lend, an coloun gnanites are commosily of suade of gnay but pink on reed ranieties also oceoun freeqnently. The coloun of the roeks depends on the propention of the felsspans to the fernomay nesian minerals and aleo the colour of tue faldspan itself

Bacsalt

$$
\text { Spceific gnavity }-2.9-3.1
$$

Characteristicy - The Basalts are very common volcanic rocks and the term covers many varcieties. These ane basic lavas in which plagioclace felaspouns and the ferromagne sian minerals oceurs in elpost equat proportion. Terese. Thene may be a lithe omantz and alkali felaspan also. The fermopnagresion minev al is eitaer augite on olvine and inon onide. Som dimes hypensthene, hormblende on biotite also ocit
ghe coloure tere lowsalfs vany fromm enay black to black and naken dult in appenenamea. Cetllutar and emygdaloidat struetures ane Cormon and less fincomently the roex is ponphyRitic showimg lange anystats of plagioclasein a fine grownd mass.

Dolerite
Specitic Gravity $-2.64-3.12$
eharuteristies, 9t is darev, heary, finely coystanlike dyke roek. Typically it is eomposed of labradorite, augite ond irDn orisas.
(II) Sedimentany roens

Thase Roeks hare becen foamed by the demurdafion of pree ererti 6 noeks and the deposition and conselinbtion of two derunded ronateriat in waten on ain. The sestimensany noexs are ehara efrepsed by Stratification.
shale
These ane finety Stratitied Noens ana cele comparfed rouds, elays, on silts. So me times the shalers ane so finkly Stratified that each laminate is mo thicken thean a Sheet of pexpen. Apant fromm clay whieh is eheifly kaolin ter senales osntain varying propertions of sand and also calcaroow maften and with the in-arease in twe propoetion of sand derrnade into Ptue ofained Sanastove ana coith 2 renease of calcancews ronatien twey pars into limesotome. onco af

States are soft and disintegrate into swirl ir os. rents. These oceour in various shades of colon - gray, bluff, yellow red, brown, purple, grieg er or black.

Sandstone -
made up eliefly of sand grains held togeth. en by some cementing material like silica, iron Oxide or lime. Some sandstones contain little come Stine substance and their tenacity is ave to the pressure durciong the ti me of consolidation. Apes, from sora the oninor constituents ane felaspon mica, garnet, magnetite, eke.

The size of tue grains varies very widely. Qr, the fine grained types the sand panticks Sene generally arnugglan but in tue coarsen varieties the sand pantiles are well nourded. Bedded or crioss-bedded structures ane well marked.

The colour varies widely from onay, white buff, brown to red depending pnimarity or the colour e of the eemention material.

10

Identification of Minerals and Rocks

HIGHLIGHTS

- 7 Keys in Recrogrisrç Mireas
- Seiecter Scecmers ii Mireras
- 4 Kays 1 Fecorgisirç Fcos
- Selected Scecmers if Foxs

Drec 99% of the earth's crurt in made पو st the itht major elements-oxyen 4 - $\%$, Jixicot 269%, aluminium 6.0%, zoo 355% akium $\$ 35 \%$, sodium $=-5 \%$, potanin 253% and magrestium 215%. Sece tements naturally make mineraly br themeine ez. gold. platinum sopper sutoc: and

 zropers A चineti tur femire ov feinef

Fg. 111 greas ichuty

Fig. 10.4 Testing Sveraks of Minerals

eaction. The diagnostic characteristics of hand pecimens of some common minerals and ocks are described in the following paragraphs.

KEYS TO RECOGNISING MINERALS

Key No. I: Lustre

Every mineral has either a metallic or a nonnetallic lustre (i.e., reflection of light from he mineral surface). A metallic lustre is spical of a metal, e.g., gold, silver, copper, luminum, etc. Such minerals are opaque and when crushed they yield a powder which s black or darker in colour than the mineral tself. Minerals having a non-metallic lustre secome transparent on a thin edge, and when rushed they yield a powder which is white or ighter than the mineral itself. The common ones are-

Vitreous
2. Pearly
5. Silky

Earthy
Greasy
5. Waxy

Adamantine Diamond, Lead, Rutile, Cinnabar, Corundum
7. Resinous Sphalerite, Wolframite, Sulphur, Sphene
Quartz, Malachite, Azurite,
Barite, Halite, Topaz
Mica, Chlorite, Gypsum,
Calcite, Talc, Dolomite

Gypsum
Camotite, Kaolinite, Bauxite Cnolite, Serpentine, Scheelite

Key No. 2: Hardness

Hardness is described by Mohs scale He places talc, the softest of all minerals as $\mathrm{N}_{0} 1 \mathrm{in}$ se
series and diamond, the hardest of all hoosminerals as No. 10, as follows-

10 Diamond
9 Corundum
8 Topaz
7 Quartz
6 Feldspar
The scale does not indicate the exact hardness; it only means that any mineral cat scratch all those beneath it Some familiar objects we can use in the field to test are-
6.5 Steel File
5.5 Knife Blade, Window Glass
3.0 Copper Coin
2.5 Fingernail

Minerals under 2.5 will leave a mark on paper; those under 5.5 can be scratched by a knife; and those over 5.5 will scratch glass.

Key No. 3: Colour

There are minerals that are reasonably constant in their colour and are diagnostic of them, as follows-

1. Yellow Sulphur
2. Pink Feldspar
3. Blue
4. Green
5. Brass
6. Auburm
7. Bronze
8. Black
9. White

5 Apatite
4 Fluorite
3 Calcite
2 Gypsum
1 Talc
3. Greenish
4. Greenish-black
5. Gray
6. Pale Green
7. Light Blue
8. Scarlet
9. Orange
10. Yellow

Galena
Chalcopyrite
Chalcocite
Malachite
Azurite
Cinnabar
Realgar
Carnotite

Key No. 5: Cleavage

Crystalline minerals are said to cleave or have cleavage when they break in definite directions along smooth surfaces. These are diagnostic of some minerals as follows -

1. Octahedral

Diamond
2. Platy
3. Cubic

Covellite, Molybdenite
4. Scaly
5. Rhombic
6. Flaky
7. Diamond-shaped
8. Blocky

Galena, Halite
Graphite
Calcite, Dolomite, Siderite, Magnesite
Mica, Chlorite
Barite
Anhydrite, Feldspar

Key No. 6: Fracture

Minerals that break in irregular directions are said to fracture. These are also typical of some minerals-
$\begin{array}{ll}\text { 1. Conchoidal } & \begin{array}{l}\text { Quartz, Malachite, Azurite, } \\ \text { Magnesite, Opal, Tourmaline, }\end{array} \\ & \begin{array}{l}\text { Beryl } \\ \text { 2. Hackly } \\ \text { Gold, Copper }\end{array}\end{array}$

Key No. 7: Specific Gravity

It implies how heavy it is with respect to equal volume of water and can be diagnostic of some minerals as follows -

1. Very Heavy Gold, Silver, Cinnabar,
2. Heavy Galena, Copper, Pitchblende, Wolframite, Malachite, Azurite, Siderite, Corundum, Zircon, Garnet
3. Medium Chalcopyrite, Cuprite, Pyrite, Haematite, Magnesite, Gypsum, Calcite, Talc, Dolomite, Kyanite, Bauxite, Kaolinite, Quartz Graphite, Halite, Stilbite, Natrolite, Sulphur, Borax, Opal

SELECTED SPECIMENS OF MINERALS

Anhydrite [CaSO_{4}]

Its composition is calcium sulphate but does not contain water like gypsum. It is found in veins, cavities (as crystals) and also as evaporate deposits (Fig. 10.5).

Fig. 10.5 Anhydrite

Lustre
Cleavage
Colour
Streak
Hardness
Specific

Vitreous; Pearly (on cleavage) Blocky
White
White can be scratched by copper coin Gravity 2.9-3.0

Apatite $\left[\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}, \mathrm{F}, \mathrm{Cl})\right]$

It is the common phosphate (calcium phosphate with hydroxyl, flourine and chlorine) that occurs as accessory minerals in rocks. It is known as hydroxyapatite when rich in hydroxyl, flourapatite when rich in flourine and chlorapatite when rich in chlorine. Apatite occurs either as transparent, glassy, prismatic or tabular crystals or as dull, fibrons or gramular aggregates (Fig 10.6).

Fig. 10.6 Apafte

hexagonal
ir
white (if pure) but more often green, brown, yellow or blue White

rage

ure
ness
fic gravity

Poor

Conchoidal
5
3.1-3.4
ite $\left[(\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Ti}, \mathrm{Al})_{2}(\mathrm{Si}, \mathrm{Al})_{2} \mathrm{O}_{6}\right]$
he most common igneous pyroxene. It occurs attered crystals evenly distributed throughout sic igneous rock, notably gabbro and basaltic Augite crystallises in the monoclinic system. curs as prismatic crystals (often twined) and anular masses (Fig. 10.7).

our	Brown, green or black
ak	Colourless
tre	Glassy
acity	Translucent to opaque
avage	Good (2-dimensional at 87°)
cture	Uneven

Fig. 10.7 Augite

Hardness \quad 5.5-6.0
Specific gravity 3.23-3.52
Azurite $\left[\mathrm{Cu}_{3}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{OH})_{2}\right]$
It is the basic copper carbonate with distinctive azure blue shades. It occurs only in the oxidized portions of copper ore veins. Azurite commonly occurs as an earthy material. The crystal system is monoclinic with tabular or equidimensional habit (Fig. 10.8).

Fig. 10.8 Azurite

Crystal
Colour
Streak
Lustre
Cleavage
Fracture
Hardness

Specific gravity 3.77-3.89
Barite $\left[\mathrm{BaSO}_{4}\right]$

Lustre Vitreous
Cleavage Diamond-shaped
Colour

It is the most common mineral containing barium and one of the most common sulphate minerals. It is heavy and often found as crystals of enchanting blue colour (Fig. 10.9).

Transparent
Azure blue
Light blue
Brilliant(vitreous to adamantine)
Complex
Conchoidal
3.5-4.0 (it is very soft and can easily be broken to form
gemstones) Blue, White, also colourless

Fig. 10.9 Bante

Streak
Hardness Specific

White
can be scratched by copper coin Gravity 4.5

Bauxite [Principal Ore of Aluminium]

It is a mixture of diaspores $[\mathrm{AlO}(\mathrm{OH})]$, gibbsite, boehmite and other materials. Within this noncrystalline colloidal precipitates, clay, limonite and partly weathered silicates may be present (Fig. 10.10).

Fig. 10.10 Bauxite

Occurrence Earthy and massive

Structure

 Colour Nobby Generally grey and white with reddish brown iron stainsStreak White
Biotite $\left[\mathrm{K}(\mathrm{Fe}, \mathrm{Mg})_{2}\left(\mathrm{Si}_{3} \mathrm{Al}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}\right]$
Biotite (potassium-magnesium-iron-aluminiumsilicate) is a type of mica and occurs as tabular prismatic crystals with scattered grains, scales and scaly masses (Fig. 10.11).

Fig. 10.11 Biotite

Crystal	Monoclinic
Form	Scaly
Colour	Black, dark green or brown Generally glossy with white streaks Lustre
and platy structures	
Opacity	Opaque to transparent Cleavage Perfectly 1-dimensional (splits into thin elastic sheets)
Hardness	$2.5-3.0$

Borax $\left[\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}, 10 \mathrm{H}_{2} \mathrm{O}\right]$

It is the most widespread borate (hydrous sodium borate). It occurs in large deposits in the dry beds of salt lakes in arid and semi arid regions. Borax occurs as prismatic crystals, crusts and porous masses (Fig. 10.12).
$\begin{array}{ll}\text { Crystal } & \text { Monoclinic } \\ \text { Colour } & \text { Usually colourless, white or tinted } \\ \text { Streak } & \text { White }\end{array}$
Fig. 10.12 Borax

Lustre	Glassy or resinous
Opacity	Translucent to opaque
Solubility	Soluble in water producing a
sweet alkaline taste	
Hardness	$2-2.5$
Specific gravity	1.7

Calcite $\left[\mathrm{CaCO}_{3}\right]$

It is the most common mineral and the main constituent of limestone (Fig. 10.13).

Fig. 10.13 Calcite

\(\left.$$
\begin{array}{ll}\text { Occurrence } & \begin{array}{l}\text { Dog-tooth spar crystals } \\
\text { Rhombohedral }\end{array} \\
\text { Crystal } & \begin{array}{l}\text { Rhomber or grey but sometimes } \\
\text { Colour } \\
\text { colourless or tinted yellow, blue, }\end{array} \\
& \begin{array}{l}\text { green and pink }\end{array}
$$

Acid reaction \& Quick effervescence with

hydrochloric acid\end{array}\right\}\)| Streak | White |
| :--- | :--- |
| Lustre | Vitreous to earthy |
| Cleavage | Perfectly 3-dimensional |
| Hardness | 3 |

Corundum $\left[\mathrm{Al}_{2} \mathrm{O}_{3}\right]$

It is a common mineral important as an abrasive and also as gemstone (Fig. 10.14).
Occurrence As pyramids, prisms (often rounded into barrel shapes) and granular masses
Crystal
Colour
Streak Rhombohedral Usually colourless brown, red, blue, white, black, green and grey Colourless

Fig. 10.14 Corundum

Lustre	Brilliant to glossy
Fracture	Conchoidal
Hardness	9
Specific gravity	4.0

Chalcopyrite $\left[\mathrm{CuFeS}_{2}\right]$

It is the most important copper mineral and ore of copper. Chalcopyrite (copper iron sulphide) occurs as tetrahedral or spheroidal crystals (often twined) and as granular and compact masses (Fig. 10.15).

Colour
Acid reaction
Streak
Lustre
Opacity
Cleavage
Fracture
Hädness
Specific gravity

Brass yellow
Soluble in nitric acid
Greenish-black
Metallic
Opaque
Poor
Uneven
3.5-4.0
4.28

Fig. 10.15 Chalcopyrite

Galena [PbS]
It is the chief ore of lead. Galena (lead sulphide) occurs as crystals (twin) and granular masses (Fig. 10.19).

Fig. 10.19 Galena

$\begin{array}{ll}\text { Colour } & \text { Lead grey } \\ \text { Lustre } & \text { Metallic } \\ \text { Cleavage } & \text { Perfectly cubic and } \\ \text { Streak } & \text { Grey } \\ \text { Specific gravity } & 7.57 \text { (very heavy) }\end{array}$

Graphite [C]

Like diamond, graphite consists solely of crystallized carbon but differs extraordinarily in colour, hardness, conductivity and crystallisation. It is often fibrous with sectiles. It can mark paper. It is a good conductor and is the most stable form of carbon (Fig. 10.20).
Colour
Streak
Lustre
Feel
Grey or black
black
Metallic
Greasy

Cleavage 1 -directional scaly (flexible scales) Specific gravity 2.1-2.2

Gypsum $\left[\mathrm{CaSO}_{4}, 2 \mathrm{H}_{2} \mathrm{O}\right]$

It is the most common sulphate. Gypsum (hydrous calcium sulphate) is of three varieties with distinctive habits-alabaster (massive), selenite (transparent and foliated) and satimspar (fibrous with silky or pearly lustre). It occtrs as prismatic and bladed crystals and as fibrous vein fillings, radiating aggregates, clusters on cave walls and massive rock forming beds (Fig. 10.21).

Fig. 10.21 Gypsum

Colour

Lustre
Cleavage
Hardness
Specific gravity 2.3

Haematite $\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]$

It is the major ore of iron. Spectacular haematites occur as brilliant black tabular crystals, commonly foliated. Generally three varieties are recognized-red haematite (as columnar or radiating masses and fibrous clusters), kidney ore (as kidney shaped masses) and earthy or ocherous haematite (as dull yellowish, or in oolitic, earthy form) (Fig.10.22).
Acid reaction
White or grey but may be colourless (in large crystals), pink (in alabaster) or brown and yellow (in massive beds) Silky or earthy Distinct
2 Soluble in concentrated hydro chloric acid

Hardness
6-6.5
Specific gravity 5.01
Quartz $\left[\mathrm{SiO}_{2}\right]$
It is the principal constituent of glass and occurs as irregular grains intergrown with other minerals of as rounded grains or as microscopically grained specimens or as prismatic crystals (often twined) (Fig. 10.35).
Crystal Hexagonal
Colour
Opacity Normally transparent
Fracture
Hardness
Specific gravity
2.65

Fig. 10.35 Quartz

Talc $\left[\mathrm{Mg}_{3} \mathrm{Si}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}\right]$
Talc (hydrous magnesium silicate) occurs as foliated, radiating and compact masses. It has a 3-layer sheet structure. Two silica tetrahedral layers enclose an octohedral layer in which all octahedral positions are filled with magnesium ions. Because of weaker sheet-bondage, talc is a better lubricant and feels greasier (Fig. 10.36).

Colour
Streak
Lustre
Opacity Cleavage Fracture Hardness Specific gravity

Fig. 10.36 Talc

Topaz $\left[\mathrm{Al}_{2}\left(\mathrm{SiO}_{4}\right)(\mathrm{OH}, \mathrm{F})_{2}\right]$
Topaz (aluminium fluro silicate) is often used as gemstones. It is highly durable and has a high index of refraction. It occurs as crystals (column prisms with striated faces) and as granular masses. It is colourless and brittle (Fig. 10.37).
Crystal
Streak
Lustre Opacity Cleavage
Hardness
Specific gravity

Orthorhombic

Pale
Glossy
Transparent
Perfectly 1-directional
8
3.49

Fig. 10.37 Topaz

Tourmaline

Tourmaline is an aluminium silicate with a very complex chemical formula. It oceurs in a wide variety of colours-rubellite, indicolite, achroite, dravite, etc. The colours are often zones either along the length or across the width of the unique rounded- triangular erystals. Watermelon tourmaline has a green exterior, surrounding first tourmaline has a green extenor, suroundie black
a white zone and then a red core. The jet blater

White, green, blue or brown

White

pearly
Translucent to transparent
Perfectly 1-directional Irregular
2.58-2.83

SELECTED SPECIMENS OF ROCKS

Basalt

Basalts make up over 98% of all volcanic rocks. It is a very fine grained (cryptocrystalline) and dark coloured (melanocratic) mafic ($44-52 \%$ silica content) igneous rock with typical volcanic texture, very high specific gravity (2.9-3.1) and high hardness (cannot be scratched by knife). It is very compact and is characterised by conchoidal fractures. Individual minerals cannot be identified by the naked cye. The characteristic minerals are calcic-plagioclase, pyroxene and iron ore with or without olivine. They may be vescicular or the vescicules may be filled with secondary minerals forming amygdales and thereby giving rise to amygdaloidal structure. The basaltic magma which erupted under water forms pillow-like masses giving rise to a basaltic pillow lava. The individual pillows have a glassy crust and a more or less crystalline interior which may show radiating contraction cracks. Two main types of basalts may be recognized tholeiitic basalt (rich in clinopyroxenes and poor in calcium) and alkali basalt (rich in lime and olivine) (Fig. 10.42).

Coal

It is regarded as a sedimentary rock because it is found in layers or beds. It is lighter in weight, black in colour and often friable. It has banded structure (Fig. 10.43).

Fig. 10.42 Basalt

Fig. 10.43 Coal

Conglomerate

Conglomerates are clastic sedimentary rocks of rudaceous type. These are pebbly rocks of medium to fine in size (over 2 mm in diameter). These are variegated in colour with moderate to high specific gravity and moderate compactress Being mostly of fluvial, glacial and shoreline origin, these consist of typical mud-free gravels or their lithified equivalents (i.e., grains of quartz, jasper, feldspar and rock fragments of various sizes, shapes and colours). The texture is typically clastic as lithic clasts are the essential constituents. The pebbles, cobbles, gravels, rock fragments and granules are cemented together in a fine-grained matrix or ground mass of ferruginous (reddish brown), siliceous (light colour) argillaceous (muddy odour) and calcareous (reaction with dilute hydrochloric acid) sediments (Fig. 10.44):

Fig. 10.44 Conglomerate

Dolerite

Dolerites are the hypabyssal representatives of the gabbros and basalts, finer grained than
dic former but coarser grained than the latter: They occur mostly as dykes and sills and their texture is frequently ophitic or subophitic. They are dark coloured (melanocratic) mafic igneous rocks with high specific gravity (2.643.12), high hardness and high compactness. Feldspar laths are randomly oriented forming a criss-cross arrangement-the interspaces are filled up by ferro-magnesian minerals in which traces of cleavage can be seen. As it is prone to weathering, local patches of reddish brown tint can often be distinguished. Generally two types of dolerites are recognised-tholeititic or quart: dolerite (rich in clino and ortho-pyroxene and calcicplagioclase) and alkali dolerite (rich in lime).

Gabbro

Gabbros are coarse or medium grained, melanocratic, mafic and plutonic igneous rocks with high specific gravity (2.9-3.2), high compactness and high hardness. The essential constituents are calcic plagioclase feldspar and one or more ferromagnesians like orthopyroxene, clinopyroxenc, olivine, hornblende, etc. Some gabbros have a subhedral-granular texture while others have a poikilitic or a subophitic texture in which plates of pyroxene or amphibole partially enclose the erystals of plagioclase Many gabbroic instrusions have well marked banded or layered structures while a few have orbicular structures (Fig, 10.45).

Fig. 10.45 Gabbro

Gneiss

Gncisesare medium colonred, moderately coanse grained, hard and compact metamorphic rocks of the highest grade with medium specific gravity. It is a coarsely erystalline rock of a granular texture. It is typically characterised by alternate bands of light and dark coloured mincrals. The lighter bands are composed of quartz and feldspar with an equant granular habit while the darker bands are defined by the preferred orientation of flaky and platy ferro-magnesian minerals like mica, amphibole, homblende, augite, etc. (Fig. 10.46).

Fig. 10.45 Gneiss

Granite

Granites are coarse grained (phaneritic), light coloured (leucocratic), acidic ($>66 \%$ silica content) and holocrystalline plutonic igneous rocks with medium specific gravity ($2.63-2.75$). They are hard and compact rocks composed essentially of quartz, feldspar and mica, usually with some ferro-magnesian minerals. Feldspar is identified by its lath shape in which cleavage may be present, while quartz is identified by its vitreous lustre and mica by its flaky habit. Both plagioclase and mafic minerals tend to form subhedral crystals while intergranular spaces are occupied by anhedral quartz. This typical interlocking of grains form the ustal (subhedral-angular) texture. Sometimes micrographic intergrowth of quartz and feldspar is found. Some of these arc porphyritic, commonly with phenocrysts of potash feldspar. A few develop rapakivi texture in which ovoids of potash feldspar are mantled by

Fig. 10.47 Granite

lime-bearing plagioclase. Regarding the larger scaled structures, some have a banded or layered structure. A few on the other hand show an orbicular structure while high level granitic rocks may develop a drusy structure (Fig. 10.47).

Limestone

Limestones are rocks whose primary constituents are composed dominantly of aragonite (orthorhombic CaCO_{3}) and calcite (rhombohedral CaCO_{3}). They are very fine grained, light coloured with moderate specific gravity ($2.5-2.8$) very compact but of low hardness (easily scartched by a knife or even fingemails). Texture is typically non-clastic-calcinudite pebble-sized grain), calcarenite (sand-sized grain), calcisiltite (silt-sized grain) and calcilutite clay-sized grain). It strongly reacts with cold and dilute hydrochloric acid. A salient feature is that most of the limestones are particulate and

Fig. 10.48 Limestone

bimodal, i.e., they consist initially of relatively large carbonate particles mixed in various proportions with carbonate mud. Compositional layering characterised by different colour bands are often present (Fig. 10.48).

Marble

Marbles are coarse grained, light coloured rocks with high compactness, low hardness and medium specific gravity. They are produced by the metamorphism of limestones and hence are dominantly composed of calcite. They strongly effervesce with dilute hydrochloric acid. Generally, they show an even grained texture. Some show a crude foliation due to segregation of minor silicate constituents or in some cases a parallel alignment of lustrous flakes of graphite while some bear the imprint of stain in the form of lensoid outlines (Fig. 10.49):

Pegmatite

Pegmatites are very coarse grained, hard, moderately compact leucocratic igneous rocks with medium specific gravity. They occur as dykes or veins in the plutonic bodies or as marginal segments to such plutonic intrusions into the adjoining country rock. They are dominantly composed of quartz and feldspar and also contain minerals like tourmaline, fluorite, topaz, lepidolite, etc. They show a typical interlocking texture. Pegmatite minerals are oriented perpendicular to the walls of the dykes and some

Fig. 10.49 Marble

